Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The accumulation and transmission of mechanical stresses in the cell cortex and membrane determines the mechanics of cell shape and coordinates essential physical behaviors, from cell polarization to cell migration. However, the extent that the membrane and cytoskeleton each contribute to the transmission of mechanical stresses to coordinate diverse behaviors is unclear. Here, we reconstitute a minimal model of the actomyosin cortex within liposomes that adheres, spreads and ultimately ruptures on a surface. During spreading, accumulated adhesion-induced (passive) stresses within the membrane drive changes in the spatial assembly of actin. By contrast, during rupture, accumulated myosin-induced (active) stresses within the cortex determine the rate of pore opening. Thus, in the same system, devoid of biochemical regulation, the membrane and cortex can each play a passive or active role in the generation and transmission of mechanical stress, and their relative roles drive diverse biomimetic physical behaviors.more » « less
-
We investigate the structural, vibrational, and mechanical properties of jammed packings of deformable particles with shape degrees of freedom in three dimensions (3D). Each 3D deformable particle is modeled as a surface-triangulated polyhedron, with spherical vertices whose positions are determined by a shape-energy function with terms that constrain the particle surface area, volume, and curvature, and prevent interparticle overlap. We show that jammed packings of deformable particles without bending energy possess low-frequency, quartic vibrational modes, whose number decreases with increasing asphericity and matches the number of missing contacts relative to the isostatic value. In contrast, jammed packings of deformable particles with non-zero bending energy are isostatic in 3D, with no quartic modes. We find that the contributions to the eigenmodes of the dynamical matrix from the shape degrees of freedom are significant over the full range of frequency and shape parameters for particles with zero bending energy. We further show that the ensemble-averaged shear modulus 〈 G 〉 scales with pressure P as 〈 G 〉 ∼ P β , with β ≈ 0.75 for jammed packings of deformable particles with zero bending energy. In contrast, β ≈ 0.5 for packings of deformable particles with non-zero bending energy, which matches the value for jammed packings of soft, spherical particles with fixed shape. These studies underscore the importance of incorporating particle deformability and shape change when modeling the properties of jammed soft materials.more » « less
An official website of the United States government
